If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-14t+8=0
a = 2; b = -14; c = +8;
Δ = b2-4ac
Δ = -142-4·2·8
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{33}}{2*2}=\frac{14-2\sqrt{33}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{33}}{2*2}=\frac{14+2\sqrt{33}}{4} $
| -5x+15x=-20 | | 18c+7c-2c=46 | | -3x-5x=80 | | 6c-5c+3c=16 | | h+7=40 | | 7u+5u-6u-5u=22 | | 8(v-3)=5v-6 | | -13=3+x | | 4(x+9)=-4(2x-6)+4x | | 15^2+22x-48=0 | | -9x-21=-4(x+9) | | 2r/r^2=9 | | (x+5)^2=7.8 | | 16z-7z=7 | | 2t/5=7 | | -34k-6=21 | | 2n+3n+5n=20 | | 3(3n-5)+4(5n+2)=3n+123 | | 5(r–1)=2(r+2)+4r | | 18=0.75(8-8k) | | 2(x+5)^2−1=7 | | 4d−–2=18 | | 3(w-3)=8w-29 | | 360.32=8(0.07m+29.80+0.30(29.80)) | | 2x=12/2=9 | | 3e-2=6e+10, | | -26+13x=-26 | | -42=2v-8v | | -12(x-8)-3=93 | | 4(y+3)-1=5 | | y/3=-50 | | 6+x/8=21/6 |